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" ABSTRACT
; Let g; (1 = 1, ..., m) be smooth vector fields on Rﬁ, and let 77! gy be

their Taylor expansions of order n - 1 at the origin. The system
m
x(t) = 2 gy (x(t))uy(t), x(o) =0 € B generates an input-output map
i=1
u(*) * x(u,*) whose n-th order Taylor approximation xn(u.-) can be

obtained by computing the n-th Picard iterate for the reduced system

ot

x(t) = Zm (ani)(x(t)) u;(t), x(o) = 0, discarding the terms of order

i=1
>ne FPor z € nF, directional error bounds of the form

: . n- t 8 m
| < z, x(u,t) ~ xn(u.t) > | < c P Jo | Io 121 gi(°)°i(°) do | Pag

can be given. These estimates improve those supplied by the classical

'
|
’ Taylor's theorem and yield results concerning local non-controllability.

AMS (MOS) Subject Classifications: 93C10, 49E1S

. Key Words: Nonlinear control systems, Picard iterates, Taylor expansion.
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SIGNIFICANCE AND EXPLANATION

Consider the control system on R@:

4

5 X(t) = " g, (x(t))eu, (), x(o) = 0.

i=1 /

Given a control u, in general there exists no explicit formula to exactly
compute the corresponding trajectory t + x(u,t). -!hé?;;;sgﬁt-paper provides
a simple method of constructing approximations. x (u,t) of x(u,t), which are
linear combinations of integrals of the controlg\ u; and which can be
explicitly computed. The coefficients of these iinear combinations are
obtained from the partial derivatives of the vector fields g; at the origin,
using a Picard iterative procedure. ,/"

Here the approximation error is the'va;tor € (u,t) = x;(u,t) -
x(u,t). New and precise bounq;-on the length of en(u,t). as well as on the
size of the projcctiona,of“ﬂen(u,t) on some special subspaces of M are
given. ‘\‘u,h,l

The present formula can be used for a systematic study of a control
system over a short interval of time, in much the same way as the classical
Taylor expansion is used to study the local properties of differentiable
functions. '/Er’:é?

~ \® 5!"
N e
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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} . ON THE TAYLOR APPROXIMATION OF CONTROL SYSTEMS

Alberto Bressan

Consider an autonomous nonlinear system on 8 with control entering linearly:

x(t) = £(x(t)) + ™ g, (x(t)) u, (¢)
i=q (1.1)

‘ x(o) = 0, t>0.

Systems of the form {1.1) were first studied in a paper by Hermes and Haynes (4] and
! received continued attention since then., If f and the gi'l are smooth vector fields,
} then (1.1) yields a smooth input~output map é: L‘([o.')l )+ C({0,=); ) defined by
$(u)(t) = x(u,t), where x(u,*) 4is the unique solution of (1.1) corresponding to the
control u. In general there exist no explicit formulas giving the trajectory x(u,*)
directly in terms of the control. It is therefore natural to look for some computable
approximation of the map §. The Taylor expansion of ¢ in terms of Volterra kernels

was considered by Brockett [1]. The local aproximation of a control system of the form

o A iim et o

x(¢) = I g, (x(t)}u (¢), x(0) = 0 (1.2)
i=1

by means of an auxiliary (nilpotent) system is studied in {5]. For analytic systems,

expansions in formal power series are given in [(3].

'

j In the present paper we approximate the input-output may ¢ generated by (1.2) with
linear combinations of certain iterated integrals, here called integral monomials. Using
functional analytic techniques, we derive a simple procedure to recursively compute the
coefficients of the Taylor expansion for ¢ in terms of the Taylor coefficients of the

91" at the origin. No analyticity assumptions are needed. Our main concern is a

Istituto 4i Matematica Applicata, Universita d4i Padova, 35100 ITALY.
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precise estimate of the approximation errors. Since the system (1.2) is linear in u,
these errors are essentially due to the nonlinearity of the vector fields gy, which
depend only on x. We thus obtain bounds which depend not on the size of the control
u(*) but only cn the norm of a first order approximation to the trajectory x(u,s).

The estimates contained in Theorems 1 and 2, in sections 5 and 6 respectively, improve
those supplied by the classical Taylor's theorem and are sharp enough to yield results on
1ucal non-controllability for the system (1.1). Examples are provided in sections 4 to

6. Some related results recently appeared in [6].

§ 2. Preliminary Abstract Results

Given two Banach spaces E and F, k » 0, we denote by Lk(E,F) the space of
continuous k-linear mappings A from 2 E = ExEx...xE (k times) into F, with the
operator norm

A = sup {lA(v1, ceer ML My i €1, L =1, L, x}.
If ¢:E + F is a smooth mapping, its k-th Fr;chet derivative at a point u € E is
Dk@(u) e Lk(E,F). It is well known that high~order f‘erivatives are symmetric
multilinear mappings. Dké(u) is therefore completely determined by assigning its values
on elements of the form v[k]- (V,V,00e,v) eg E. We write Bp for the closed ball
centered at the origin with radius o, and Tn0 for the n-th order Taylor expansion of
the map ¢ at the origin, i.e.

(Teyw) = " o pletoreulil,

i=0
Given a function & = & (u,x) defined on a product space ExF, its partial derivatives
are denoted by au,ax. In this case, TnO stands for the n-th order Taylor expansion of
¢ at (0,0). The Landau order symbols O and o will also be used. For the basic

L]
properties of differential calculus in Banach spaces, our general reference is Dieudonne

[2]. The approximation procedure considered in this paper is based on the following

simple result:

e




d

! ’ Proposition 1. Llet E,F be Banach spaces, let (u,x) + #(u,x) be a CK map from a
neighborhood of the origin in ExF into F such that #(0,0) = 0, 3x0(0,0) = 0, and
let the map u : E + F be implicitly defined by é(u) = &(u,¢(u)). If ¥, are C¥
maps such that T% = T% ana Tm‘t - Tn-1¢ for some n, 0 < n < k, then the n~th
order Taylor expansion at the origin of the map u + ¥(u,¥(u)) coincides with TnQ.
' Proof. Since the maps ¢(°) and Y(*,¥(¢)) are both Ck. we only need to show that,
under the above hypothesis,
1im 18(u) ~ Y(a,p(w)ielul" = o, (2.1)
n*0
By Taylorfs theorem, for a suitable constant C and for u,x sufficiently close to the

origin one has

16(w1 < Clul, $p(w)1 < clul, I§(u) - ¥(uw)? < clut®,

12 ¥(u,x)1 € Cllul+ixl), 18(u,x) = ¥lu)l € C au™ ! 4 ™y,
These inequalities imply

16(u) = ¥(u,p(u))t < 18{u,éd{u)) - Y(u,$(u))¥ + 1¥(u,4(u)) =~ ¥(u,p(u))l

< crat™ne 1™y + [ 13 veu,Eetm+-Dr0 100 0) - w1 &

n+1 |n+1

{ < o1+ Ny + C(lul + clul) « cluf”,
; which proves (2.1).
Corollary 1. If @, 4 satiafy the assumptions made in Proposition 1, then
1im 1 #(u (T ) (u)) - (T"8)(a) 1e0ut™" = 0. (2.2)
u*0
§3 The Taylor Formula
Most of this paper is concerned with the system (1.2). Notice that, by setting u, 1,
a control system of the form (1.1) is recovered as a special case of (1.2). To simplify

all further discussion, we assume that the vector fields g, are c.. In the

following, |g;(x)| denotes the euclidean norm of the vector

-3~
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g, lx) e 8, while IVgi(x)l is the operator norm of the dxd matrix of first order
partial derivatives of g; at x. The set of admissible controls is defined as
Us o= (g, eeesud @ L0020 lu ()] €1, £ 21, ooy m € 0).

The L1 norm on the set of controls and the (° norm on the set of trajectories will be
always used. We write (1.2) in the more compact form

x(t) = G(x(t))ult) , x(o) = O. (3.1)

G is therefore a Ca map from ’e into L(EVRY). calnl G(j)(z) its j-th derivative
at ze” and let G, = T°6. Set E = l}([0.°)llm). F =~ C(10,2):8%), and define the
map & : ExF + F by

$tu,y)(e) = [ Gry(s)uls) as . (3.2)
Then & = &" o &', with &'(u,y)(t) = (u(t), G(y(t)))
and

" (u,z)(t) = Iz Z(s)u(s)ds.

@' is a ¢ substitution operator and %" is bilinear. Hence ¢ ie k times
continuously Prechet differentiable, for all k. In particular, 3£ O(uo,xo)(t) is the
j-linear map

v 15 B xgten) 3 e) uyte) as, (3.3)

3“31 O(uo,xo)(t) ia the multilinear map

B s (5 6O x (811 y 1 (s) ute) as (3.4)
and 3:31 ® =0 for i > 1, because the dependence on u is linear. Notice that the

input-output map u(*) * x(u,*) = $(u)(*) generated by (1.2), or equivalently by (3.1),
is implicitly defined by the equation ¢{u) = ®(u,p(u)), and that both ¢ and 3x [
vanish at (0,0}. The Taylor expansion of & at the origin can therefore by computed
recursively, by means of Proposition 1. We will show that Tné can always be written as
a finite sum of certain iterated integrals of the control u, here called integral
monomials (integromials, in short).

Definition. The family M = M(m,d) of integral monomials is the smallest set of mappings

1
u from L ((0,#);®R™) into ﬂd with the following properties:




————

i) Por every linear A : | Rd, the map

(3.5)

Wi (ue) » [Eacuteas

is in )
1) If My, eee, u @ M ana if B:(ad)* » L(lPtld) is k-linear, then M also contains

the map

porto) » JE i tu,8), cee, w (0,0)) uls)as. (3.6)

Using a canonical identification, we shall regard integral monomials as multilinear
wappings frow L‘([O,')tlm) into c°([0.')tld)- If peMis k-linear, wve say that u

has order k. Notice that if in (3.6) ¥y has order vi(i = 1, seey k), then has

order 1 + vy + eee + Vi Consider now the approximate system
x(t) = G (x(t))ult) , x(0) =0, 3.7

recalling ocur definition : Gv - TVG. The first Picard iterate for (3.2)

P, (u,t) = [% Glo)uls)as (3.8)

is an integral monomial of the form (3.5). Moreover, if the n-th Picard iterate P, can
be written as a finite sume of integral monomials, say
N(n)
P (u,t) .321 uylu,t),
then the same holds for P ,.4. Indeed
= (t v _1 (X} [x)
Pogtut) = [0 T 6 (0N (u,8))  uis)ds
2 k=0
can be reexpanded into a finite sum of integral monomials of the form (3.6), namely

1
Pty = [P T f8 2a™0) e,y ue)ute)ds, (3.9)

k=0 ger !

where T = TF(Xx,N(n)) is the set of all mappings ¢ from {1,2,...,k} into

{1,...,8(m)}.
In practice, the k-th order Taylor expansion TkO at the origin for the input-output

map ¢:u(e) » x(u,*) generated by (3.1) can be obtained by either of the following

methods:




- ————————ro o -4 .
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1) Compute the k-th Picard iterate for the system
X(t) = G 3 (x(t)ule) , x(o) =0 (3.10)
and discard the integral monomials of order > k.
I1) Set xn(u,‘) = (T™)(u)(*) and recursively derive x, from x _. (n = 1,...,k) by
expanding the map
(w,e) >[5 6 x,_y(u,8)) uls)ds (3.11)
into a sum of integral monomials, discarding those which have order > n.
Indeed, for n » 1 set

o tux)e) = [C G (x(s)) u(s)ds (3.12)
and check that the Taylor expansions at (0,0) of On and ¢ (definedq at (3.2)) coincide
up to order n. Let P, be the n-th Picard iterate for (3.10), regarded as a map

u(s) + Pn(u,-) from L1 into C°. Agsume that Tn-1Pn_1 = Tn-1¢. Then, by setting
¥=0,¥b=P ., Proposition 1yields T'P =79, provided n < k. By induction,
TP = T¢.  observing that P, is a finite sum of integromials, to obtain its k-th
order Taylor expansion at the origin one merely discards the terms of order > k. This
justifies I). Now set Y = °n' Y = Tn-1¢- By Proposition 1 the map

u °n(u,(Tn-1¢)(u)), otherwise defined at (3.11), has the same n-th order Taylor

expansion at the origin as ¢. Discarding from (3.11) the integral monomials of

order > n we thus recover T'¢ from Tn-1¢- One obtains Tk¢ by repe.ting the above

procedure for n = 1, ..., k.

§4 Examples
Example 1. The third order Taylor expansion for the scalar system
x(t) = cos x(thu (t) + u,(t), x{o) = 0

is

(T ) = (Elu (e) + u_(e)13s =% It u o, 0¢ [ u. (0. )0, ) 20
T ‘o 2 26 "M% o 119272 1

1 ato0( [ Y (o, 1do )(10' (o140 183, - Yy [Su (000 | Tu, (0. 200, )2
0“110“1220“2221/201102221'

-6~
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If uy is constrained to be identically 1 we obtain an approximation for the systea

x(t) = cos x(t) + ult), x(0) = 0, namely

3 [
t t t 1 2
xlue) =t =~ =+ Y[ uloao - % [7 ( /, utoy)a0,) a0,

ag
t 1 4
g 04 ], uto,)d0,d0, + 01t

Example 2, Consider on ®  the control system

X = X(x) + Y(x)ou . x(0) = 0, k.1

Assume that X(o) = 0 and span {(ad“x,v), v=0,1 2} = Rs. Then the map 7 : (sy,

sy, 83) * {exp S4 Y) ¢ (exp 8,1Y,X}) » (exp s3[{¥,X],X]) (o) defines a local chart of

a neighborhood of the origin in 13. In this chart, the third order Taylor approximation
for (4.1) takes the form

k [+
t 1 t 1 2 4
x (u,t) = !ou(-)d- + = ]Q ( ]° ulo,)do,) de, + 0(t")

g k ]
t 71 2t 1 2 4
xytu,e) = 0] u(o,)d0,d0, + 5 [ ([ ulo,)do,) a0, + 0(t") 4.2)

[ g k [
t (%1 %2 3t 1 2 4
xyla,e) = [ Io [ utay)d0, do,80, + 5 g ¢ [y ute,la0,)%da, + 0ce™),

where the congtants k1, X, k3 are obtained from the linear relation

kIY(O) + kz[YIX] (o) + k3[[Y,x] ,x] (o) = (¥, (¥,X11(o).
To prove (4.2), we need to compute some Taylor coefficients of X and Y in the given

chart. The definition of * implies that Y = (1,0,0), (Y,X)(o) = (0,1,0) and

((Y,x}, X1(o) = (0,0,1). We thus have

4

-%— (o) = YeX(o) = [Y,X]{0) = (0,1,0)
1

[

5’.‘—- {o) = Y,X] * X(o)} = [[Y,X],X](o) = (0,0,1)
2

-7-
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33! (o) = Y(Y*X)(o) = [Y,[Y,X]](0) = (k, ,k, ,k,)
20 o Y, 1Ky eky)e

351

One can now multiply the vector field X by a fictitious control u, 2 1 and use Theorem

1 to get (4.2).

Remark: It is clear that the truncated Taylor expansions are not invariant un¢ . change
of coordinates. The above example shows how the local Lie algebraic structure the
system can yield a chart in which the expansion takes the simplest possible f¢ For a

general procedure to construct "canonical® charts, see (5 p. 127]).

§5 Error bounds.
High-order Taylor expansions are the primary tool in the local study of functionals at
points of singularity. If the origin is a stationary point for amap A : E+ R, one
classically proves that A attains a local minimum at 0 by ghowing that for some n > 1
(T™A)(u) = A(o) > ¢ +tat" (5.1)
for all u is a neighborhood of the origin. One would hope to use a similiar arqument
and prove non-controllahility results concerning the system (1.1). For example, let f(o)
= 0. Then (1.1) is not locally controllable at the origin if, for some nontrivial z* e
ld, T > 0, the functional A(u) = < 2%, x(u,T)> attains a local minimum at = 0.
Coercivity conditions such as (5.1), however, can seldom be obtained in connection with
control systems. To overcome this difficulty, one needs bounds on the error
€(u) = 1(T"$)(w) = #{u)l which are sharper then the classical bound €(u) < crur ™!

supplied by Taylor's theorem.

Lemma 1. Let x(u,*) be the solution of (1.2) corresponding to the control u. Then
there exists a t;, > 0 such that, for every continuous map y from [O,tol into the unit

ball 31 S ﬂl




{
lyte) = xtu,e)] < 2 sup (1 [ Gy(s)lutards - ()]s 0 ¢ 7 < ¢} (5.2)
» for all t e [0,t,], ueuU.
’ ‘ Proof. Set t, = M1, with
Me2n+ sup ”91(’0' + IVgi(x)[, x€ B, =1 .., m}.
! Then the map & defined at (3.2) satisfies
| POy = Sy, ) <Vply, - 2'cro,e )
‘ and 0(u,y1)(t) e By, for every u € U, t € [0,t,] and every continuous maps
; Yqe ¥y 8 [O.tol * B, Since x(u,) 18 a fixed point for the may y + ®lu,y), the
f contraction mapping theorem yields 1ty - x{(u,*)l € 2y ~ &(u,y}t, i.e., (5.2),
|
: ! lamma 2. PFor each u € U, let x{u,*) be the sciution of (3.1) and let yn(“") be the
solution of
yit) = G,_q(ylt))ult), x(o) = 0. (5.3)
§ Then there exist C and t > 0 such that
ly, tu,t) - xtu,er] < ¢ JO | I2 Gtorutorac!™as (5.4)
for all t e [0.t°], ueuv.
' ! Proof. Choose t, > 0 so small that y (u,t) € B, for all uevU, ¢t e[o,t,]. Lemma 1
: ? : implies the existence of a t, > 0 such that t < t, and
| ly,ta ) = xtu,£)] < 2 sup { | [ Gly (u,a))u(s)ds ~ y, (e, 0¢ 1< 8 (5.5)
for all t e (0,:01, u € U. Using (5.3) we have
; Iy fure) = xtu, 3] < 2 sup { | ];(G(yn(u,s)) = G _,ty (u,8))]uls)as], 0 < 1< ¢}
: ‘f <2.c J:’; ly, (u,0)|"as, (5.6)
' vhere the constant C, depends only on the size of the n-th derivative of G on By.
. Set
; M=m>* sup { |V(Tn-‘gi)(=)la tes Cad i 1, veey m},
! nie) = | ]zc(o)u(l)dul, w(t) = lyn(u.t) - ]gG(o)u(a)dsl. For almost every p
{ tefot], wie) < | Gy (Falut)) =6 _to) | <M ly (u,e)] € Mwie) + n(e)),

" . -o-
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t Mt
since w(o) = 0, Gronwall's lemma yields w(t) ¢ C2 jo nis)ds, with C, = Me ©. Using

L]
Holder's inequality we get the estimate

t n t T n
2/, Jylu,s)|%as < 2 jo (n(t) + c, jo n(s)ds) "ar

t n t T n
< ]o (1)) ar + Jo (2c, Jo n(a)de) dr (5.7)

t n n, t _n n1 t n
< fomtrnar + (2c ) et (fonTmamtT | < ¢, [oaT(nar,

with €3 = 2% + (2c; t ). Combining (S.6) with (5.7) one has (5.3), with C = C,C5.

The above lemmas provide a simple estimate for the error in the Taylor expansion of ¢.

Theorem 1. Let x(u,*) be the solution of (3.1). Set G, 4 = ™

xn(u.t) = (Tn¢)(u)(t). Then there exist C, t, > 0 such that

t -] n
Jxtu,e) ~ x tu,&) | < ¢ Jo | JO G(o)u(o) do| ds +
(5.8)

T
+ 2 sup { lxn(u,t) - fo Gn_1(xn(u,s))u(s)ds|x 0< 1< ¢},

for every n €U, t € [O,tol.
Indeed, |x(u,t) = x (u,t)} € |x(u,&) = y(u,0)] + Jy (u,&) = x (u,e)]|. The

estimates (5.4) and (5.2) with G replaced by G,_4 yleld (5.8),

Example 3. Consider the bidimensional system %; (x,y) = (u+yecos x, x -xa).

{x(0),y(0)) = (0,0). 1Its third order approximation is

xtu,t) = (% u(moe + e tu,t) L yiut) = {5 [2 uaranr®as + e, tu,e .

Theorem 2 yields the bounds

(5.9)

4] g
t 3 t 01, 2 2
le,tar] € e f | J: u(o)ac | as + 2 [ [ ([ “uloy)d0,) a0, ,




IR o
- g = vyt el RPN

for 1 =1, 2, uevu and t sufficiently small. Prom (5.9) we see that
1 |€2(U:tH = of ]: ( f: u(a)dc)zdt), hence, for small ¢, x{u,t) > 0 and the system is
not locally controllable. For any fixed ¢t > 0, consider the control w (t) = cos At.

tends to (2 tol‘l)‘. while ]; ( ]: ux(o)(ﬁ)zd. tends to
4

As A+, lul‘1
Leo,t ]

', zero. Bounds of the®type | ei(u,t)l < Cct or Iei(u,t)| <coamt are therefnrs too

weak for proving non-controllability even in this simple case.

——-

§6 Directional Estimates.

To obtain more precise bounds on the error in the Taylor expansion of (1.2), in this
section we split F into a sum of orthogonal subspaces VP and estimate the size of the
error separately on each VP Given the control systea (1.2), define an increasing
sequence of subspaces sp < ld recursively by setting {) so = {0}, 41i) sp is the

. ——- g e e Aot =

smallest subspace of If’ such that for all 1 =1, ..., m and kx = 0, ..., p oOne has

k -

D gi(o)(zp...,:k) [ ] SP for every k-tuple (z1,...,zk) with ¢, € 831 and

g 32 + ee. jk < p. In particular, 84 is the smallest subspace that contains the
m vectors g;(o) and is invariant under the linear operators Vgl(o) (L =1, oo, W)

Now choose any ; >1, Por 1< p« ; define V_ as the orthogonal complement of sp_,

. P
i in sp. Let V_ be the orthogonal complement of 8 in WA, Finally, denote by 'p
P -1

p.
| the orthogonal projection Rd *> Vp. With this notation, we have

4 u(e) + xn(u,') be its n~th order Taylor approximation about the null control. If

'

f

} Theorem 2. Let u(*) + x(u,*) be the input-output map generated by (1.2) and let
’ pe{1,...,p} and n > p, then there exist C,, t, > 0 such that

t
In (xtu, ) = x (w,e))] € c t"F [o] [5G(oruloras|Pas (6.1)

for all t e [0,t,), ueU.

‘i Proof. Let y, be the solution of {(5.3). By lLemma 2, the difference yn(u,t) - x(u,t)
: & satistifies a bound of the form (6.1) for any p = 1, ..., p. Therefore we only need to
' show that
«ftf=

3

LRI IR e 5
jj‘%"_- e
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t
’lp(yn(u,t) - x (u,e] < c, t"P [ lx,tu,00]Pas,
o]

vhere
B

x,(u,8) = [ G(o)u(oldo
]

gives the first order Taylor approximation to the trajectory x(¢,*). In §3, X, was

proven to be a finite sum of integral monomials occuring within the first n Picard

iterates for the system (5.3). To keep track of its size, to each one of the above

integromials we attach an integer 7Y(u) as follows: If u = LI defined at (6.3),

set Y{(u) = 1. 1If

ntu,t) =[5 6™ o) (u, u,my,en Ly (u,8)dus)ds, (6.4)

set Y(u) = Y(u1) + e 4 Y(uk). We stress that this definition refers exclusively to

the integromials arising via Picard jterations for the particular system (5.3) presently

considered. Comparing the definitions of Y and of the subspaces sp, it is clear that

uf{u,t) e SY(u) for all ¢t > 0, u € U, Also notice that if the order of

u s v > 1, then Y(u) < v - 1, A basic estimate on the size of integral monomials is

now given.

Lemma 3. let u be an integral monomial of order Vv > 1 occurring in some Picard

iterate for (5.3), and let Y(u) = p. Then there exists a constant C such that
lutu,t)] < ¢ ¢V7P? JE Ix,tu,8)|Pas (€.5)

for all uweu, 0<¢t< 1,

Proof. Notice first that for the integromial x1(°,-) we have Vv = p = 1, For all

others, v > 1, Moreover, the only integral monomials for which v = p + 1 have the

form

ulu,e) =[5 %T 6P (o) (x,tu,81)Puts) as (6.6)

and clearly satisfy an estimate of the type (6.5). The general case will be proved by

induction on v, assuming v > p + 2. If u is given by (6.4), let vy have order

v1 < v and let v(ui) =Py (L = 1,e00,k)s The inductive hypothesis implies that either

ui - X‘ or v - -
17Py

P
lu‘(u,-)l <cpes J; Ix,u,0)] Y a0

(6.7)
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for some constant C; and all ueU, 0< tc< 1,
Using the symmetry of G(”(o), we can reorder the vy and assume that (6.4) has the form
ua,e) = J8 L c‘*’(o)(u,(u,.),....uh(u.-), %, (u,8) 00 % (u,8) uls)ds (6.8)
for some 0 € h < k, with each “1(1 € { < h} having order vy > 1. The order of y In
(6.8) is then v = 1 A TER IR f\ahfk-h. vhile p = v(u) =Pyt ph*k-h. In
the following, we set q = py + »°¢ *pPp,=P-k+h It gq=0, then 4 has the fors
(6.6) and the estimate (6.5) ias immediate. If q > 0, the inductive hypothesis and
Il;ld.r'l inequality imply

' ho v -p -t P
lutu,er) < e 8 |x,(u,.)|*'“‘n‘ [e,ot ™! 2 Ix (w001 tao) as

pth (q-pll/q
v 8

] as

o e g <

h
cc eV g () ix,(u,0)190)
o P o 1

<t e P ) "N [S 1xy10,0)1%0) aa, (6.9)
where the ocongtants C, c', Cy are independent of u and t. If h =k, (6.5) is a
trivial consequence of (6.9). If h < k, ons recovers again (6.5) from (6.9) integrating
by parts and using Ilgldor'n inequality:
fwta,etl € € P2 S ix cu,0 1" Mo Etx, (u, 0019200
<c P! ]:; h‘(“'.”k-h*q‘..

Returning to the proof of Theorss 2, for any control u @ U and any constants

‘ i
i ‘ C, T > 0, detine )-u(c") as the set of all maps z ¢ (([0,=), ?) such that
- o ¢"P (¢ P
J frgtate) - = tu,e))f <o ¢t [g %ytu,0)Fan (6.10)
' for all t e (0,t), p= 1, ..., ; We claim that yn(u,-) e )_“(co,to) for some C_,
| ty, >0 and all uewu.

\ Lemma 4. There exist constants C,, t, such that, for every u € U, the map tu defined

by

¢ (5)(e) = [5G _(s(s))uls)as
u o n=1

maps )“(co,to) into itself.

Proof. Given u e U, - ° (Cl(lo,»); ld), for p=1, «.., ; set

o

% ..

+
P
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wp(t) = ﬂp(l(t) - xn(u,t)). We then have
t
e (x dtu,e) = ¢ (2e) | € 1o (x (u,e) = |4 Gpaqtx,turs))utsrds)|

t t
+ pr( ]o G _y(x (u,8))uls)as ]o G

nei (X, (us8) + P wp(l))“(l)dl)'

p=1

= [a(u,t)| + |B(u,t)|. (6.11)
Notice that A(u,t) is a finite sum of integral monomials which, by Corollary 1 in §2,
have order > n. If u is one of such monomials, then either Y(u) > p or

wp(u(u,t)) = 0. By Lemma 3, there exists a constant C4 > 0 such that

b e (aen] < c 7P ]z|x1(u,a)|pds (6.12)

1
for all uevuv, 0<t< 1, p=1, ..., p. Take C° = 2C1. To determine a suitable to'

observe that PR(u,t) can be written as a finite sum of terms of the type

St L)
Atu,t) jo Sy () (wp'(s), vers vpz(')' Hpay(UrB)s coey iy, (u,8),

x1(u,s), cony x‘(u,l))u(l)dl.

where k @ {1,...,n-1}, £ > 1 and the integromials Vgaqr vooe Ugyy have order > 1.
For i =2 +1, ..., %2 +h, let py = Y(ui)' Observe that the order of vy is then at

least p; + 1. If z e) (C, T) we thus have the inequalities

P
|u1(u,s)| <cC ]: |x1(u,o)| 1dc,

NPy Py
|vpi(u,-)l <c s ]:|x1(u,o)| do,

for a suitable constant C and 8 < min {t,1}. The definition of sp implies that

either p, + ... +p, +k - % =-hD>p, or wp(A(u,t)) = 0. The same arguments used in

the proof of Lemma 3 now yield constants Cye tg > 0 such that

" (Atu,e)) < c, "7 [%1x (u,0)Pas, (6.13)

=-14-




for 0<t<t2,ueu.
Therefore, there exist C,, ty > 0 such that

n-p+1 (t P
ln (Blu,eN)] < Cy ¢ !olx,(u.-)l as (6.14)
for all ue€UY, p=1, ..o, p, t € [0,t3]. Comparing (6.11) with (6.12) and (6.14), we
see that Lemma 4 holds with t, = min {1, ty Gy ;1)

The conclusion of the proof of Theorem 2 is now straightforward. For all u €U,
yn(un) is the unique fixed point of O“. By Lemma 4, Yn(“"’ e [“(co,co), hence
(6.2) follows from (6.10).

With the same notation of Theorem 2 we have
Corollary 3. If p > 1, n < p, then there exist C,, t, > 0 such that
t ]
! v (x(u,t) - x (u,e))] = | wp(x(u,t))l <c [l I3 Glo)ulo)as|Pas (6. 15)
for all ueu, te(0,t], p=1 <oy Pe
Indeed, x, is a sum of integral monomials uy having order ¢ n. Hence

Y(ui) <p and wp(ui(u,t)) £ 0. This implies lp(xn(u,c)) z 0. Setting n = p,

Theorem 2 yields the bound (6.15).

Example 4. consider on l3 the system X - ()':', ’.tza ;t,) = (u cos xy = x5 = X3¢
2 3
tglxy - x3), sinz Xy = X% x4), x(0) =0 € 2. A third order expansion yields

o
2
“("3’“3“2‘”1 + c1(u,t),

g
t t 1
xytu,t) = [ wedas - [0 [ 7 [

g
t 1
xy(u,t) = ]o Jo ulo,)do o, + € tu,t) ,

t 2
xyu,t) = [C ( [3 uta)ao)“ds + egu,t).
Por this system, 84 =V, =

(e, £,,00 5 E L8, @ rl, 8, = P, v, = {(0,0,6,)1 £, € R}. By Theorem 2 there exist

C, T >0 such that

-15-




2
| egtue)l € C ¢t !g | J2 uto)ae |“as

for all uwevy, te [0, T]. Hence, for small t, xa(u,t) > 0 and the system is not

locally controllable. An alternative p:vof of this could be obtained from the results in

[6).
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